BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes.
نویسندگان
چکیده
Bone morphogenetic proteins (BMPs) are multifunctional cytokines, which play a key role in vascular development and remodeling. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been shown to be protective against vascular and lung injury. In a microarray study, we identified HO-1 as a major target of BMP4 signaling in human pulmonary artery smooth muscle cells (PASMCs), and confirmed the induction of HO-1 mRNA and protein by RT-PCR and Western blotting, respectively. Immunoblotting demonstrated that incubation of PASMCs with BMP4 rapidly phosphorylated Smad1/5 and activated the mitogen-activated protein kinases, p38(MAPK) and ERK1/2, in PASMCs, but not JNK. Using pathway selective inhibitors, the induction of HO-1 mRNA and protein was shown to be dependent on activation of p38(MAPK). Induction was independent of Smad1/5 signaling, since HO-1 mRNA and protein induction was intact in PASMCs harboring mutations in the kinase domain of BMP type II receptor, with disrupted Smad signaling. In addition, adenoviral transfection of kinase-deficient BMPR-II also failed to inhibit BMP4-induced HO-1 expression. In functional studies, the HO-1 inhibitor, ZnPP-IX, partly reversed the growth-inhibitory effects of BMP4, and overexpression of HO-1 in PASMCs inhibited serum-stimulated [3H]-thymidine incorporation. Taken together, these findings show that HO-1 is an important Smad-independent target of BMP signaling in vascular smooth muscle. Inhibition of HO-1 function or expression will further increase the proproliferative capacity of BMPR-II-deficient PASMCs and may thus represent a potential "second hit" necessary for disease manifestation.
منابع مشابه
BONE MORPHOGENETIC PROTEIN SIGNALING IN HERITABLE VERSUS IDIOPATHIC PULMONARY HYPERTENSION BMP signaling in Pulmonary Hypertension
Mutations in gene encoding for bone morphogenetic protein type 2 receptor (BMPR-2) have been reported in pulmonary arterial hypertension (PAH), but their functional relevance remains incompletely understood. BMP receptors expression was evaluated in human lungs and in cultured pulmonary artery smooth muscle cells (PASMCs) isolated from 19 idiopathic PAH patients and 9 heritable PAH patients wit...
متن کاملBMP4 Increases the Expression of TRPC and Basal [Ca2+]i via the p38MAPK and ERK1/2 Pathways Independent of BMPRII in PASMCs
Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contributi...
متن کاملBone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension.
Mutations in the gene encoding bone morphogenetic protein (BMP) receptor type 2 (BMPR-2) have been reported in pulmonary arterial hypertension (PAH), but their functional relevance remains incompletely understood. BMP receptor expression was evaluated in human lungs and in cultured pulmonary artery smooth muscle cells (PASMCs) isolated from 19 idiopathic PAH patients and nine heritable PAH pati...
متن کاملMutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension.
Heterozygous germ line mutations in the gene encoding the bone morphogenetic protein (BMP) type II receptor occur in more than 80% of patients with familial pulmonary arterial hypertension. Because inhibitors of DNA binding (Id) genes are major targets of BMP/Smad signaling, we studied the regulation of these transcription factors in pulmonary artery smooth muscle cells harboring mutations in B...
متن کاملIntegrative Physiology Smad-Dependent and Smad-Independent Induction of Id1 by Prostacyclin Analogues Inhibits Proliferation of Pulmonary Artery Smooth Muscle Cells In Vitro and In Vivo
Rationale: Mutations in the bone morphogenetic protein type II receptor (BMPR-II) are responsible for the majority of cases of heritable pulmonary arterial hypertension (PAH). Mutations lead to reduced Smad1/5driven expression of inhibitor of DNA binding protein 1 (Id1) and loss of the growth suppressive effects of BMPs. The impact of existing PAH therapies on BMP signaling is lacking. Objectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 37 5 شماره
صفحات -
تاریخ انتشار 2007